Math 150, Lecture Notes- Bonds Name

Section 5.5 Bases Other than e and Applications

Bases Other than e

The base of the natural exponential function is e. This “natural” base can be used to
assign a meaning to a general base a. |
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Definition of Exponential Function to Base a

If a is a positive real number (@ # 1) and x is any real number, then the

. . = . a
exponential function to the base « is denoted by a* and is defined by L Y= <o lhe@ ¢ _:;' ; WZ 4;’;
a* = elnax ) % e ,,_,74——5
) e - e
Ifa = 1,then y = 1¥ = 1 is a constant function. x -\ (2)

4= e
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X % luea)
These functions obey the usual laws of exponents. For instance, here are some&j

familiar properties.

1. a°=1 2. a*a’ = a* Y
ax

3. S =a" 4. (a¥)y = a™
a

When modeling the half-life of a radioactive sample, it is convenient to use % as
the base of the exponential model. (Half-life is the number of years required for half
of the atoms in a sample of radioactive material to decay.)

Ex.1 Radioactive Half-Life Model

The half-life of carbon-14 is about 5715 years. A sample contains 1 gram of carbon-14.
How much will be present in 10,000 years?
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% x 0 20 The half-life of carbon-14 is about 5715
years.

Figure 5.25



Logarithmic functions to bases other than e can be defined in much the same way
as exponential functions to other bases are defined.

Definition of Logarithmic Function to Base a
If @ is a positive real number (@ # 1) and x is any positive real number, then the

logarithmic function to the base a is denoted by log,,x and is defined as

1
1 =—1Inx
og,x = —Inx

In precalculus, you learned that
log,, x is the value to which a must be
raised to produce x. This agrees with the
definition given here because

alog.r = a(l/ln a)ln x

(eln a)(l/]n a)ln x
=¢ (In a/In a)ln x

— elnx

= X.

Logarithmic functions to the base a have properties similar to those of the
natural logarithmic function given in Theorem 5.2. (Assume x and y are positive
numbers and 7 is rational.)

1. log,1 =0 Logof 1

2. log,xy = log,x + log,y Log of a product

3. log,x" = nlog, x Log of a power

4. log, S log,x —log,y Log of a quotient
y

From the definitions of the exponential and logarithmic functions to the base a, it
follows that f(x) = a* and g(x) = log, x are inverse functions of each other.

Properties of Inverse Functions
1. y = a*if and only if x = log,, y
2. alog”x = X, fOr x>0

3. log,a* = x, forallx

The logarithmic function to the base 10 is called the common logarithmic
function. So, for common logarithms, y = 10* if and only if x = log,, y.



Ex.2 Bases other than e
Solve for x in each equation.
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Differentiation and Integration lniy= In@”)

To differentiate exponential and logarithmic functions to other bases, you have three

options: (1) use the definitions of a* and log,, x and differentiate using the rules for the \ n M) = X ) U @)

natural exponential and logarithmic functions, (2) use logarithmic differentiation, o 0?
~—

(3) use the following differentiation rules for bases other than e. E [M )j p\{ (X ‘ Ll/l @7
AN

,_Llw/[r'(rf
THEOREM 5.13 Derivatives for Bases Other Than e
\ \ . L dq ~ lu &)

Let a be a positive real number (a # 1) and let u be a differentiable function of x. 10 AK

d (| = X (_I u|l — 11@
1. (lx[a 1= (na)a 2. (Ix[a 1= (Ina)a I \ﬁ . g?.j — 0) . !VLCQ)

d d | du 9 AX
3. E[log” x] = o 4. a[logu u] = o dx A K [[/{@)

By definition, a* = ¢~ So, you can prove the first rule by letting
u = (In @)x and differentiating with base e to obtain

d d du

L] = Z[,na)x] = puzl — J(na)x — X

I [a] I [e ]=e I e (Ina) = (Ina)a*.
To prove the third rule, you can write

d d| 1 1 (1 1

—_ 1 _ _1 [ Il — )

dx[ 0g, %] dx [lna nx] Ina (x) (In a)x
The second and fourth rules are simply the Chain Rule versions of the first and third
rules. .
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Occasionally, an integrand involves an exponential function to a base other than
e. When this occurs, there are two options: (1) convert to base e using the formula
a* = ¢ @x and then integrate, or (2) integrate directly, using the integration formula

Jax dx = (L)ax + C
Ina

(which follows from Theorem 5.13).

Ex.4 Integrating an Exponential Function to Another Base
Find [ 2* dx.

2 A e u= 2"
2= 2" e
o g (M/)u dq;%\i“dz Q
dnz (@) 2.0
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| @) Au_ - dx
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When the Power Rule, D _[x"] = nx"~!, was introduced in Chapter 2, the
exponent n was required to be a rational number. Now the rule is extended to cover
any real value of n. Try to prove this theorem using logarithmic differentiation.

THEOREM 5.14 The Power Rule for Real Exponents

Let n be any real number and let « be a differentiable function of x.

1. C;—i_[x”] = px"!
2. i[u”] = nu""! du

dx dx
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The next example compares the derivatives of four types of functions. Each
function uses a different differentiation formula, depending on whether the base and

the exponent are constants or variables.

Ex.5 Comparing Variables and Constants 0

dr,

a. —[e‘] =0 Constant Rule
dx
d | S

b. —[e*] = e* Exponential Rule
dx

c. —[x¢] = ex¢! Power Rule
o]

d y=x' Logarithmic differentiation
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Applications of Exponential Functions

Suppose P dollars is deposited in an account at an annual interest rate r (in decimal
form). If interest accumulates in the account, what is the balance in the account at the
end of 1 year? The answer depends on the number of times n the interest is
compounded according to the formula

A= P(l + 5>n. " A
" 1| $1080.00
For instance, the result for a deposit of $1000 at 8% interest compounded n times a > | $1081.60
year is shown in the upper table at the left. i
As n increases, the balance A approaches a limit. To develop this limit, use 4 | $1082.43
the following theorem. To test the reasonableness of this theorem, try evaluating 12 | $1083.00

[(x + 1)/x]* for several values of x, as shown in the lower table at the left. (A proof

of this theorem is given in Appendix A.) 365 | $1083.28




. (x + 1>x
. . . x
THEOREM 5.15 A Limit Involving e
10 2.59374
. 1\* ) x+ 1\

Iim {1+ —] = lim = e 100 2.70481

X—0o0 X X—00 X
1000 2.71692
10,000 271815
100,000 2.71827
1,000,000 2.71828

Now, let’s take another look at the formula for the balance A in an account in
which the interest is compounded # times per year. By taking the limit as n approaches
infinity, you obtain

lim P(l +-f>

n—o0o n

1 n/r r
P lim [(1 + —) ]
n—oo I’l/l"

=P[Mn<l+l)}
xX—00 X

= Pe’.

A

Take limit as n — oo.

Rewrite.

Let x = n/r. Then x — oo as n— oo.

Apply Theorem 5.15.

This limit produces the balance after 1 year of continuous compounding. So, for a
deposit of $1000 at 8% interest compounded continuously, the balance at the end of
1 year would be

A = 1000¢ -8
~ $1083.29.

These results are summarized below.

SUMMARY OF COMPOUND INTEREST FORMULAS

Let P = amount of deposit, # = number of years, A = balance after ¢ years,
r = annual interest rate (decimal form), and n = number of compoundings per
year.

nt
1. Compounded n times per year: A = P(l + %)

2. Compounded continuously: A = Pe”




Ex.6 Comparing Continuous, Quarterly, and Monthly Compounding
A deposit of $2500 is made in an account that pays an annual interest rate of 5%.
Find the balance in the account at the end of 5 years if the interest is compounded (a)
quarterly, (b) monthly, and (c) continuously.

n 0.05\4®)
a. A = P(l + £> = 2500(1 + 4> Compounded quarterly
n
r\ 0.05\120)
b. A = P(l + —> = 2500(1 + 12) Compounded monthly
n
c. A = Pe = 2500[e055)] Compounded continuously
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The balance in a savings account grows
exponentially.
Figure 5.26









